The Laws of Collisions in Physics

A small ball of mass m is held directly above a large ball of mass M with a small space between them, and the two balls are dropped simultaneously from height H. (The height is much larger than the radius of each ball, so you may neglect the radius.) The large ball bounces elastically off the floor and the small ball bounces elastically off the large ball.

a) For which value of the mass m, in terms of M, does the large ball stop when it collides with the small ball?

Answer:

a) the large sphere has 3 times the mass of the small sphere

b) What final height, in terms of H, does the small ball reach?

Answer:

b) y = 4H

Explanation:

We must start this problem by calculating the speed with which the spheres reach the floor

vf² = vo² - 2g y

As the spheres are released v₀ = 0

vf² = - 2g H

vf = √ (2g H)

The two spheres arrive with the same speed to the floor.

The largest sphere clashes elastically so that with the floor it has a much higher mass, the sphere bounces with the same speed with which it arrived, the exit speed of the spheres

V₁₀ = √2gH

The big sphere goes up and the small one down, the two collide, let's form a system that contains the two spheres, let's use moment conservation

Let's call vh = √2gH

Small sphere m₂ and v₂o = - √2gH = -vh

Large sphere m₁ and v₁o = √ 2gh = vh

Before crash

p₀ = m₁ v₁₀ + m₂ v₂₀

After the crash

pf = m₁ v₁f + m₂ v₂f

po = pf

m₁ v₁₀ + m₂ v₂₀ = m₁ v₁f + m₂ v₂f

The conservation of kinetic energy

Ko = ½ m₁ v₁₀² + ½ m₂ v₂₀²

Kf = ½ m₁ v₁f² + ½ m₂ v₂f²

Ko = KF

½ m₁ v1₁₀² + ½ m₂ v₂₀² = ½ m₁ v₁f² + ½ m₂ v₂f²

Let's write the values

-m₁ vh + m₂ vh = m₁ v₁f + m₂ v₂f

m₁ vh² + m₂ vh² = m₁ v₁f² + m₂ v₂f²

The solution to this system of equations is

mt = m₁ + m₂

v1f = (m₁-m₂) / mt v₁₀ + 2m₂ / mt v₂

v₂f = 2m₁ /mt v₁₀ + (m₂-m₁) / mt v₂

The large sphere is labeled 1, we are asked for the mass so that v1f = 0, let's clear the equation

v₁f = (m₁-m₂) / mt v₁₀ + 2m₂ / mt v₂₀

0 = (m₁-m₂) / mt vh + 2 m₂ / mt (-vh)

(m₁-m₂) / mt vh = 2 m₂ / mt vh

(m₁-m₂) = 2m₂

m₁ = 3 m₂

The large sphere has to complete 3 times the mass of the sphere1 because it stops after the crash.

b) Let us calculate with the other equation the speed with which the sphere comes out2 (small)

v₂f = 2m₁ / mt v₁₀ + (m₂-m₁) / mt v₂₀

v₂f = 2 m₁ / mt vh + (m₂-m₁) mt (-vh)

In addition, we know that m₁ = 3 m₂

mt = 3m2 + m2

mt= 4m2

v₂f = 2 3m₂ / 4m₂ vh - (m₂-3m₂) 4m₂ vh

v₂f = 3/2 vh +1/2 vh

v₂f = 2 vh

v₂f = 2 √ 2gh

This is the rate of rise of sphere 2 (small. At the highest point its zero velocity vf = 0

V² = v₂f² - 2 g Y

0 = (2√2gh)² - 2gy

2gy = 4 (2gH)

y = 4H

What will be the mass of the sphere and height covered by the small ball?

a) The large sphere has 3 times the mass of the small sphere

b) The final height at which small ball reach y = 4H

← Comparing light bulbs in a lab experiment The impact of aircraft size and altitude on sonic boom reduction →